[DIYbio] How Sea-Monkeys, NovoNutrients, and Synthetic Biology Will Save the World Inc article

https://www.inc.com/magazine/201905/jeff-bercovici/synbio-novonutrients-bioeconomy-sustainable-food-industry-carbon-bioengineering.html

In an office park on a leafy side street in Mountain View, California, a few miles from the headquarters of Google and Facebook, NovoNutrients CEO David Tze is showing off a technology so powerful, it just might avert human civilization from its 200-year collision course with disaster.

Striding past humming electrolyzers separating water molecules into their component elements and liquid chromatographers analyzing the molecular components of samples, he stops before a fluorescent-lighted cylindrical water tank with tiny specks floating in it. "These are the only macroscopic organisms we have here," he says. "These are Artemia."

Artemia salina, that is, a crustacean found in brackish waters and better known by its common name, brine shrimp. If you've heard of brine shrimp, it's likely because, in 1964, a man named Harold von Braunhut began marketing them as a pet-cum-novelty toy under the brand name Sea-Monkeys.

The cutting-edge science I'm looking at is a 55-year-old children's amusement from the back of a comic book?

"Yes," Tze confirms. But, he adds, "we don't give them the official Sea-Monkey feed. They just get our product."

That product is Novomeal, a protein developed for use in aquaculture, and the Sea-Monkeys are proof of concept. Fish food for fish farms, basically. The key ingredient in the commercial feed formulations used in the farming of salmon, tuna, and other carnivorous species prized by consumers is something called fishmeal, a powder made from the ground-up bodies of tiny fish such as anchovies. ("Fishmeal is strangely named: It's meal made from a fish, but it also happens to be an important part of a meal for a fish," Tze says.) Novomeal, a nutritionally complete substitute for fishmeal, is made from the proteins of bacteria and other single-celled organisms, incubated in giant steel vessels akin to beer vats, called bioreactors. Feed is the biggest cost of fish farming, a $232 billion global industry, and, given that the output of the world's overexploited oceans continues to decline, it's only getting more expensive. The supply of bacteria, on the other hand, is effectively infinite, as long as you have the nutrients to feed them.

That part--the nutrients--is why this particular fish food could play such a meaningful role in determining the fate of the planet. What the bacteria that make up Novomeal eat is CO2. You know: carbon dioxide, the stuff that's been building up in the atmosphere since the start of the Industrial Revolution, trapping solar energy and turning the seas acidic. If you believe the U.N.'s Intergovernmental Panel on Climate Change--­or the U.S. Department of Defense, or the big petroleum companies--manmade global warming is a danger on par with no other, threatening to redraw coastlines, spark wars, imperil food and water supplies, alter weather patterns and marine currents, and displace hundreds of millions of people, all within our lifetimes. In the U.S., increasingly severe hurricane and wildfire seasons have already offered a preview of climate change's long-term effects; according to the IPCC, the world's economies must cut their carbon output in half by 2030 to avoid passing a critical threshold beyond which the consequences grow rapidly worse.

"The path to getting out of here," says synbio investor Vijay Pande, "is not as bleak as it may seem."

But if the need to curb carbon emissions is clear, how to do it without torpedoing the world's economy is anything but. Global energy demand is rising fast, and oil, coal, and gas continue to satisfy most of that need. As hundreds of millions of people in China, India, and other developing nations enter the middle class, they're demanding all the perquisites of the Western lifestyle, from hamburgers to new cars. Even if the electricity required to make all that stuff can be obtained from clean renewables, like wind and solar--and we're a long way from that--the production remains a dirty, carbon-intensive business. The plastic that's in everything from yogurt containers to carpet fibers is derived from fossil fuels, typically using energy also derived from fossil fuels. Cows raised for milk and meat have a carbon footprint comparable to that of automobiles. Even something as simple as growing rice can't be done without contributing to warming: Rice farming produces 13 percent of the world's methane, a potent greenhouse gas, because flooding the ground to make paddies brings dormant anaerobic bacteria roaring back to life. As long as more humans are eating more food and buying more stuff, getting a handle on climate change will be fiendishly difficult.

Or not, if David Tze has his say. What his company is constructing--along with others working similar angles in San Francisco and Berkeley and Skokie, Illinois--is nothing less than the infrastructure for an entirely new economy, one premised on producing food, energy, and material goods by sequestering harmful chemicals rather than by emitting them. It's an economy where we'll turn landfill into jet fuel, weave clothing out of spider silk, and make furniture out of mushrooms, all using primarily renewable power. "What we're doing has the potential to change not only the food system," Tze says, "but also the way other goods are manufactured."

--
-- You received this message because you are subscribed to the Google Groups DIYbio group. To post to this group, send email to diybio@googlegroups.com. To unsubscribe from this group, send email to diybio+unsubscribe@googlegroups.com. For more options, visit this group at https://groups.google.com/d/forum/diybio?hl=en
Learn more at www.diybio.org
---
You received this message because you are subscribed to the Google Groups "DIYbio" group.
To unsubscribe from this group and stop receiving emails from it, send an email to diybio+unsubscribe@googlegroups.com.
To post to this group, send email to diybio@googlegroups.com.
Visit this group at https://groups.google.com/group/diybio.
To view this discussion on the web visit https://groups.google.com/d/msgid/diybio/6614f1aa-834d-400f-8722-bbc21d918284%40googlegroups.com.
For more options, visit https://groups.google.com/d/optout.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments:

Post a Comment